33. Additional limit information Appendix
33.1. Conversion probability as a function of mass Appendix
Fig. 1 shows how the axion-photon conversion probability changes as a function of the axion mass. This implements eq. \eqref{eq:theory:axion_interaction:conversion_probability}, reproduced here with slightly changed notation,
\[ P_{a↦γ}(z) = \left( \frac{g_{aγ} B L}{2} \right)² \left(\frac{\sin\left(\frac{q L}{2}\right)}{\frac{q L}{2}}\right)², \]
with \(q = \frac{m²_γ - m²_a}{2 E_a}\). \(E_a\) is the energy of the axion (or in the context of a limit calculation the energy of a candidate). In the vacuum setup \(m_γ = 0\). The figure shows this conversion probability for different axion energies and based on the CAST magnet. We see that the conversion probability starts falling off roughly around \(m_a \approx \SI{0.01}{eV}\), with the exact value depending on energy (and personal \(ΔP\) cutoff).
\clearpage
33.1.1. Generate the plot of the conversion probability extended
Taken and adapted from ./../org/Code/CAST/babyIaxoAxionMassRange/axionMass.html.
import ggplotnim, unchained, sequtils proc momentumTransfer(m_γ, m_a: eV, E_a = 4.2.keV): eV = ## calculates the momentum transfer for a given effective photon ## mass `m_gamma` and axion mass `m_a` at an axion energy of ## 4.2 keV `E_a` (by default). result = abs((m_γ * m_γ - m_a * m_a) / (2 * E_a)) proc vacuumConversionProb(E_a: keV, m_a: eV, B: Tesla, L: Meter): float = ## calculates the conversion probability in BabyIAXO for the given axion ## mass `m_a` # both `g_agamma` and `B` only scale the absolute value `P`, does not matter const g_aγ = 1e-12.GeV⁻¹ # convert length in `m` to `eV` let q = momentumTransfer(m_γ = 0.0.eV, m_a = m_a, E_a = E_a) let term1 = pow(g_aγ * B.toNaturalUnit() * L.toNaturalUnit() / 2.0, 2) let term2 = pow(sin(q * L.toNaturalUnit() / 2.0) / (q * L.toNaturalUnit() / 2.0), 2.0) result = term1 * term2 let energies = arange(1, 9, 2) var df = newDataFrame() for E_a in energies: let masses = logspace(-6, 0, 1000) let Ps = masses.mapIt(vacuumConversionProb(E_a.keV, it.eV, 8.8.T, 9.26.m)) df.add toDf({"masses" : masses, "Ps" : Ps, "E_a [keV]" : E_a}) ggplot(df, aes("masses", "Ps", color = "E_a [keV]")) + geom_line() + xlab("Axion mass [eV]") + ylab("Conversion probability") + themeLatex(fWidth = 0.9, width = 600, baseTheme = singlePlot) + scale_x_log10() + scale_y_log10() + ggsave("~/phd/Figs/axions/axion_conversion_probability_vs_mass.pdf")
33.2. Expected limit table with percentiles
The table shown in tab. 34 shows the same table as tab. 28 in the main part of the thesis, but with a focus on the variation of the limits. The focus is on different percentiles of the distribution of sampled toy limits. The \(P_i\) columns correspond to the limit at the \(i^{\text{th}}\) percentile of all toy limits. \(P_{50}\) would be the median and thus expected limit. The table yields insight into the probabilities with which limits are expected for certain setups, given the pure statistical fluctuation possible by the measured candidates.
The veto information has been merged into the 'Type' column. A suffix (L) indicates 'line veto', 'S' the 'septem veto' and 'SL' both vetoes. '-' means no vetoes. FADC and scintillators are implicitly included if any of septem or line vetoes are in use. The units are excluded in the column names to save space. For the axion-electron and axion-photon tables they are all in \(\si{GeV⁻¹}\). For the expected limit (last column) the uncertainty is again a bootstrapped standard deviation.
The same table for the expected axion-photon limit and chameleon limits are tab. 35 and tab. 36, respectively. They only have a single row, because we only computed the expected limit for one veto setup.
\footnotesize
εeff | nmc | Type | εtotal | \(P_5\) | \(P_{16}\) | \(P_{25}\) | \(P_{75}\) | \(P_{84}\) | \(P_{95}\) | Expected |
---|---|---|---|---|---|---|---|---|---|---|
0.98 | 1000 | MLP - | 0.98 | 6.44e-23 | 6.82e-23 | 7.09e-23 | 8.65e-23 | 9.09e-23 | 1.03e-22 | 7.805(37)e-23 |
0.91 | 1000 | MLP - | 0.91 | 6.59e-23 | 6.96e-23 | 7.21e-23 | 8.75e-23 | 9.25e-23 | 1.03e-22 | 7.856(43)e-23 |
0.95 | 1000 | MLP - | 0.95 | 6.53e-23 | 6.87e-23 | 7.14e-23 | 8.74e-23 | 9.18e-23 | 1.02e-22 | 7.860(51)e-23 |
0.95 | 2500 | MLP L | 0.8 | 6.77e-23 | 7.07e-23 | 7.26e-23 | 8.72e-23 | 9.17e-23 | 1.03e-22 | 7.862(29)e-23 |
0.98 | 15000 | MLP L | 0.82 | 6.7e-23 | 7e-23 | 7.2e-23 | 8.72e-23 | 9.2e-23 | 1.02e-22 | 7.868(11)e-23 |
0.95 | 50000 | MLP L | 0.8 | 6.75e-23 | 7.04e-23 | 7.25e-23 | 8.72e-23 | 9.18e-23 | 1.02e-22 | 7.8782(65)e-23 |
0.95 | 15000 | MLP L | 0.8 | 6.75e-23 | 7.04e-23 | 7.24e-23 | 8.72e-23 | 9.16e-23 | 1.03e-22 | 7.879(12)e-23 |
0.98 | 2500 | MLP L | 0.82 | 6.73e-23 | 7.01e-23 | 7.19e-23 | 8.72e-23 | 9.22e-23 | 1.02e-22 | 7.883(30)e-23 |
0.86 | 1000 | MLP - | 0.86 | 6.74e-23 | 7.08e-23 | 7.31e-23 | 8.88e-23 | 9.35e-23 | 1.03e-22 | 7.960(51)e-23 |
0.91 | 2500 | MLP L | 0.76 | 6.91e-23 | 7.18e-23 | 7.38e-23 | 8.9e-23 | 9.3e-23 | 1.03e-22 | 7.99(16)e-23 |
0.91 | 15000 | MLP L | 0.76 | 6.9e-23 | 7.18e-23 | 7.38e-23 | 8.87e-23 | 9.34e-23 | 1.04e-22 | 8.004(11)e-23 |
0.98 | 2500 | MLP SL | 0.76 | 6.93e-23 | 7.2e-23 | 7.42e-23 | 8.97e-23 | 9.47e-23 | 1.06e-22 | 8.085(29)e-23 |
0.95 | 2500 | MLP S | 0.78 | 6.91e-23 | 7.22e-23 | 7.43e-23 | 9.08e-23 | 9.53e-23 | 1.07e-22 | 8.113(36)e-23 |
0.95 | 2500 | MLP SL | 0.73 | 6.99e-23 | 7.29e-23 | 7.49e-23 | 9e-23 | 9.46e-23 | 1.05e-22 | 8.125(31)e-23 |
0.98 | 2500 | MLP S | 0.8 | 6.82e-23 | 7.16e-23 | 7.42e-23 | 9.02e-23 | 9.46e-23 | 1.06e-22 | 8.131(32)e-23 |
0.86 | 2500 | MLP L | 0.72 | 7.03e-23 | 7.32e-23 | 7.54e-23 | 9.09e-23 | 9.58e-23 | 1.06e-22 | 8.156(30)e-23 |
0.86 | 15000 | MLP L | 0.72 | 7.03e-23 | 7.32e-23 | 7.54e-23 | 9.06e-23 | 9.51e-23 | 1.06e-22 | 8.183(13)e-23 |
0.91 | 2500 | MLP S | 0.74 | 7.03e-23 | 7.33e-23 | 7.54e-23 | 9.12e-23 | 9.63e-23 | 1.07e-22 | 8.22(19)e-23 |
0.9 | 2500 | LnL L | 0.75 | 6.96e-23 | 7.28e-23 | 7.49e-23 | 9.13e-23 | 9.61e-23 | 1.06e-22 | 8.217(37)e-23 |
0.91 | 2500 | MLP SL | 0.7 | 7.1e-23 | 7.42e-23 | 7.62e-23 | 9.17e-23 | 9.64e-23 | 1.08e-22 | 8.287(33)e-23 |
0.86 | 2500 | MLP S | 0.7 | 7.19e-23 | 7.5e-23 | 7.72e-23 | 9.27e-23 | 9.71e-23 | 1.08e-22 | 8.401(29)e-23 |
0.9 | 2500 | LnL SL | 0.69 | 7.21e-23 | 7.52e-23 | 7.74e-23 | 9.38e-23 | 9.89e-23 | 1.11e-22 | 8.427(34)e-23 |
0.86 | 2500 | MLP SL | 0.66 | 7.32e-23 | 7.6e-23 | 7.79e-23 | 9.38e-23 | 9.76e-23 | 1.08e-22 | 8.459(35)e-23 |
0.8 | 2500 | LnL L | 0.67 | 7.3e-23 | 7.6e-23 | 7.83e-23 | 9.4e-23 | 9.91e-23 | 1.09e-22 | 8.499(32)e-23 |
0.9 | 2500 | LnL - | 0.9 | 6.91e-23 | 7.43e-23 | 7.73e-23 | 9.57e-23 | 1.01e-22 | 1.12e-22 | 8.579(37)e-23 |
0.8 | 2500 | LnL - | 0.8 | 7.13e-23 | 7.59e-23 | 7.88e-23 | 9.79e-23 | 1.03e-22 | 1.15e-22 | 8.738(39)e-23 |
0.8 | 2500 | LnL SL | 0.62 | 7.52e-23 | 7.82e-23 | 8.03e-23 | 9.68e-23 | 1.02e-22 | 1.13e-22 | 8.747(41)e-23 |
0.7 | 2500 | LnL L | 0.59 | 7.72e-23 | 8.02e-23 | 8.21e-23 | 9.86e-23 | 1.04e-22 | 1.16e-22 | 8.930(40)e-23 |
0.7 | 2500 | LnL - | 0.7 | 7.4e-23 | 7.87e-23 | 8.23e-23 | 1.01e-22 | 1.07e-22 | 1.19e-22 | 9.086(33)e-23 |
0.7 | 2500 | LnL SL | 0.54 | 8.01e-23 | 8.28e-23 | 8.51e-23 | 1.02e-22 | 1.08e-22 | 1.2e-22 | 9.257(35)e-23 |
\normalsize
\footnotesize
εeff | nmc | Type | εtotal | P5 | P16 | P25 | P75 | P84 | P95 | Expected |
---|---|---|---|---|---|---|---|---|---|---|
0.95 | 10000 | MLP L | 0.8 | 8.24e-11 | 8.5e-11 | 8.66e-11 | 9.56e-11 | 9.83e-11 | 1.04e-10 | 9.0650(75)e-11 |
\normalsize
\footnotesize
εeff | nmc | Type | εtotal | P5 | P16 | P25 | P75 | P84 | P95 | Expected |
---|---|---|---|---|---|---|---|---|---|---|
0.95 | 10000 | MLP L | 0.8 | 3.22e+10 | 3.35e+10 | 3.43e+10 | 3.82e+10 | 3.93e+10 | 4.16e+10 | 3.6060(39)e+10 |
\normalsize
33.2.1. Generate the expected limit table with percentiles extended
Following sec. 13.13.3,
./generateExpectedLimitsTable --path ~/org/resources/lhood_limits_21_11_23/ --prefix "mc_limit_lkMCMC" --precision 2
33.2.1.1. Axion-photon:
./generateExpectedLimitsTable --path ~/org/resources/lhood_limits_axion_photon_11_01_24// --prefix "mc_limit_lkMCMC" --precision 2 --coupling ck_g_aγ⁴
33.2.1.2. Chameleon
./generateExpectedLimitsTable --path ~/org/resources/lhood_limits_chameleon_12_01_24/ --prefix "mc_limit_lkMCMC" --precision 2 --coupling ck_β⁴
33.3. Observed limit - axion photon \(g_{aγ}\)
Fig. 2 shows the sampled coupling constants in \(g⁴_{aγ}\) of the calculation for the observed limit, i.e. the marginal posterior likelihood function for the real candidates for the axion-photon coupling.
33.4. Observed limit - chameleon \(β_γ\)
Fig. 3 shows the sampled coupling constants in \(β⁴_γ\) of the calculation for the observed limit, i.e. the marginal posterior likelihood function for the real candidates for the chameleon coupling.